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COLLECTIVE COMPUTATION OF NEURAL NETWORK

Yao Guozheng and Wang Yunjiu

Institute of Biophysics, Chinese Academy of Sciences, Beijing

ABSTRACT

Computational neuroscience is a new branch of neuroscience

originating from current research on the theory of computer

vision. The goal of the branch is to find a new inter-

disciplinary approach to dealing with information processing in

the brain. The research involves scientists working in

artificial intelligence engineering and neuroscience. The paper

introduces the collective computational properties of model

neural networks, mainly in a theoretical framework of the study

of neural network computational properties advanced by Hopfield

and its application to vision research. On this basis, the

authors analyzed the significance of the Hopfield model.

Key phrases: Computational Neuroscience, Neural Network,

Model Ciruit, *in1 Dynamics of Neural Network,, C'

I. Foreword

The authors pointed out the following [1]: with the central

topic of visual information processing, computer vision not only

creates conditions for our overall understanding of human vision

in biointelligence, but also establishes a theoretical basis for

developing an automatic graphic analysis system, thus making

research on vision the vanguard in the investigation of brain

information processing.
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Now what sort of computation can the nervous system engage

in? In discussing this kind of problem, the obviously correct

answer is to be expected only within the computational theory

framework of Marr [2-3], because this theory specifies the

general goal of computational neuroscience. In other words, in

dealing with specific problems that a neural network should

solve, not only should a researcher decide the input image with

the expectation of the output form, but he also should decide the

algorithm for execution by this neural hardware in computation in

order to solve this problem. Hence, computational neuroscience

especially stresses how the neural hardware executes computations

using an algorithm. In other words, this approach stresses the

properties of a single neuron, the synaptic connections between

neurons, the dynamic properties of the neural network, and how

the execution can lead to a special algorithm for execution.

However, often researchers do not directly study the

bioneural network; they study a model neural network. The reason

is very simple. The bioneuron is a continuously dynamic system.

There are a large number of connection lines among neurons,

forming a large number of synaptic connections. Therefore, this

is very difficult with redoubled efforts but limited results,

when using only traditional neuroscientific methods to study the

computational properties of the bioneural network. On the other

hand, it does not do justice to reality to describe in detail,

from random sampling of synaptic connections and neuronal

activity, how a neural network computes: what sort of computation

does the neural network do? Based on Marr's computational

theory, we should distinguish between the abstract theoretical

level and the real neural mechanism. It is unrealistic to expect

to determine the algorithms by relying only on low-level neural

mechanisms. An appropriate method is to start from a theoretical

viewpoint to establish the model wiring of the neural network,

and t- analyze its dynamic properties in order to reveal its

biological meaning.
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In reality, as early as more than 40 years ago researchers

began to follow this appropriate method; many useful results [4]

were obtained. Representative examples of this kind of early

research are the threshold value element model by McCulloch and

Pitts, the linear element model of Hartline, and the neural

memory model of Caianiello. Recently, extensive studies were

conducted on the doubled-valued and continuous nonlinear neuron

model circuit when exploring the problem of associative memory.

For example, as pointed out by Little [5], if the synaptic

connections in a neural network are symmetric, then the system

will evolve to a fixed sequential state. Professor Hopfield of

the California Institute of Technology introduced the concept of

energy function in his model neural network, indicating [6] that

the system will be eventually in a state of minimum energy

function if the synaptic connections are efficient and symmetric.

Consequently, he proposed a rational framework [7] for

understanding the computational properties of a neural network.

One may conclude that this framework is an important result with

new meaning as obtained under the guidance of Marr's theory

because the framework has four following properties that are

noteworthy:

(1) A category of optimal problems can be naturally

projected into the neural network. Through the relationship
between the system stabilized point and the dynamic process

exposed by the energy function, direct understanding can be

reached on how a neural network solves this kind of problem.

(2) This relationship confers an auxiliary advantage: a

contrast can be made with spin glass with its large amount of

data on statistical mechanics, thus introducing methods of

physics and systems science into research on neuroscience.

(3) Concerning methodology, this framework has its roots in

the theory of visual computation, therefore the framework can be
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used to solve some problems about vision. In this sense, the

framework is really a development of Marr's computational theory.

(4) In nature, the computations executed by the model neural

network differ from Boolean algebraic operations, therefore the

model has very great appeal to researchers on new-generation

computers currently under development.

The paper presents Hopfield's work, strecsing the

description of collective computational properties, and

explaining that his proposed rational framework is a natural

method of studying neural network computation. Finally, the

authors apply the model neural network in elementary vision in

order to enable readers to understand and evaluate Hopfield's

model with its significance.

II. Model Circuit of Neural Network

Let us consider the following bioneuron model: its input is

from another neuron to its dendrite, and its output is from the

axon synapse to another neuron. The action potential is

generated near the cell body and is conducted along the axon to

stimulate the synapse. Assume that the electrical effects as

caused by dendrite shape and axon can be neglected, and only fast

synaptic events are considered, then the potential variation

leads to simultaneous variation of electrical conduction in

cell i presynaptically when the potential variation occurs in

cell j. The magnitude of electric conduction variation is

determined by nature and intensity of the synapse from cell j to

i.

The neuron generating action potential operates in the

steady state as described above; its impulse transmission

velocity is determined by input current from the synapse. By

changing the cell body and cellular current, the input current
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plays its role indirectly. The discharge time constant is

determined by cell capacitance Ci and membrance resistance Ri.

By integrating time constant RiCi over input current, the value

of the equivalent input potential ui can be determined.

Actually, ui is the cell membrane potential after subtraction of

the action potential. The action potential is the reaction of

postsynaptic cell body after induction of the synapse; the

reaction velocity is determined by the value of ui, denoted by

fi(ui). The relation between conduction velocity and input

current (ui) can be described with a simple harmonic S-shaped

curve. By inputting a synapse into neuron j presynaptically into

neuron i that is postsynaptic, the synaptic current intensity is

proportional to the product of fi(ui) of neuron j, and the

synaptic intensity Tij from j to i. In other words, current of

presynaptic neuron i is determined by Tij x fj(uj); hence, the

function of the action potential is described with a continuous

variable.

Many neurons operate according to the graded response mode;

they generally do not generate an action potential. However, the

presynaptic terminal can secrete a neurotransmitter, hence

capable of inducing current postsynaptically. The current

generating rate is determined by the potential of the presynaptic

cell. This kind of neuron equivalent output is also an S-shaped

simple harmonic function inputted by the synapse. Hence, whether

an action-potential-generating neuron or a hierarchical-reaction-

causing neuron, their model neurons can be described by using the

same mathematical form as shown in Figure 1A.

Assume that a neural network is composed of N neurons.

Under the above mentioned hypothesis, the dynamic equation [63 of

neural network can be obtained:

d, _ r, - _uc, -,- y, I, , N (1)
di ,,0
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Fig. 1. Input--Output Relation (A) of Model Neuron
and Electron Simulation Circuitry of Model Neural
Network (quoted from [6]).

Key: 1. Impulze transmission velocity f(u);
2. Input potential u.

This nonlinear differential equation set can be considered a

kind of description in classical nerve dynamics. It shows that

to neuron i, the net input current of ui for charging input

capacitance Ci is composed of the three following parts:

a. current behind the synapse induced in neuron i due to activity

of resynaptic neuron j; b. leakage current in neuron i as flowing

past the input resistance Ri; and c. input current from other

neurons extrinsic to the network. For any assumed neural network

defined by specific values of Tij, Ii, fi, Ci and Ri, its time

evolution process can be obtained by numerical integration of

equation (1).

As described in equation (1), the system dynamic process can

also be simulated with an electronic circuit shown in Figure lB.

This feature is very important because electronic simulation not

only can present a direct image of the dynamic process of the
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network, but also provide a direct image of network dynamic state

in addition to providing a direct avenue for realizing the

technique of network computational functioning. In this model

nerve network, a neuron is a computational amplifier with a

feedback circuit that is made up of resistance, capacitance and

connecting wires, capable of connecting axon, dendrite and

synapse. Like equation (1), the input current of any amplifier

is composed of three parts: current, leakage current and

extrinsically inputted presynaptic current. Table 1 shows the

parametric corresponding relation between the electronic and the

model neurons.

In the model expressed in equation (1) and Figure 1,

considerable simplfication was made on the properties of

bioneurons but the following features of the biological system

are stressed because they are important to the system:

1. For the neuron as an input-output conversion apparatus,

its transmission property is an S-shaped smooth curve from 0 to

the maximum output.

2. The cell membrane has a function of time space summation.

3. There are large numbers of excitatory and inhibitory

connections among neurons; these kinds of connections are

realized mainly through feedback.

4. By representing the immediate generation of the action

potential, the neuron also represents the ability of operating in

the graded response mode.

Therefore, what the model neuron precisely retains is the

two most important computational (dynamic and nonlinear)

features. Undoubtedly, this is an appropriate model for

theoretical research aimed at explaining how to generate the
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intensive computational capability by coordinated functioning

among neurons.

Table 1. Corresponding Relationship Between
Amplifier and Model Neuron Parameter.

*z;*&v (2) Aka (3),

*A(RtMt9 )

(8) ,

Key: 1. Name of parameter;
2. Model neuron;
3. Amplifier;
4. Membrane potential of input neuron;
5. Output (transmission velocity of action

potential or current velocity after
causing synapse);

6. Connection strength of synapse;
7. Input impedance;
8. Leakage current;
9. Extrinsically input current;
10. Here;
11. Provided by connection line IN.

Vi is the output potential of the amplifier; Vimax is the

proportionality factor; Pi(ui) is dimensionless function with the

same shape as that of fi(ui). The maximum output values of the

amplifier is 1; Vi is the corresponding maximum transmission

velocity of neuron i; 1/(Rij)=l/(absolute value of Tij) is the
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feedback resistance of the amplifier; by connecting with the plus

phase amplifier, Rij denotes an excitatory synapse (for the case

of linking witil the reverse-direction amplifier, Rij denotes an

inhibitory synapse); and IN connects with a direct current supply

extrinsic to the network.

III. Rational Framework for Understanding Dynamic Features of

Neural Network

As expressed in equation set (1) and Figure 1, the features

of the neural network is determined by synaptic connection

strength Tij and extrinsically input current Ii . For a given Tij

and Ii, the system state can be described with output value Vi of

various neurons in the network. Assume that Vi corresponds to a

coordinate axis in N-dimensional Cartesian coordinate system,

then the system's instantaneous state can be expressed with an

N-dimensional vector that is a point in N-dimensional space;

hence, the dynamic process of the network is the movement of this

point in the state space. The computational result of the

network is the steady state of movement.

Assume that the system has several locally steady limiting

points Xa, Xb, ..., then the computational result is certainly X

Xa when the system is sufficiently close to the position of Xa at

the start of processing of X=Xa+A. In this state, we can

consider the information stored in the system as vectors Xa, Xb,

.... If the beginning position X=Xa+,6 is one part of the

information of Xa, then the system will spontaneously release

complete information of the generating Xa. This system that is

capable of producing complete information is called a memory with

data addressing, generally also called an associative memory

device. Obviously, the nature of associative memory processing

is that the system's dynamic process should be convergent to a

set of locally steady points; the other kind of processing

executed by the neural system is also important, as we will see.
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From the viewpoint of mechanics, a locally steady point

corresponds to a state in which the system energy is at a locally

minimum state. Hence, the neural network can at least be defined

mathematically as a computational energy function, the Liapunov

function. Through the function, the collective computation

feature of describing a neural network can be described. For

example, the associative memory network can be defined as energy

function (6).

2,, 'Ej:T1 Ri"/,V (2)

In the equation, gi-i(Vi)=ui, indicating the input-output

relation of a neuron. Assume that Tij is effectively symmetrical

(functioning through interneurons); in the deriving time

derivative from equation (2), we obtain

dE_ dV , " ,- +1'(3

d - , (3)

Substitute equation'(1) into the above equation, then we have

dV, d,
- -' dV(MI

d 's Of1-- it- , (rix--) (4)

Since gi-l(Vi) is a simple harmonic increasing function, Ci
is a positive number; hence, no negative values can be obtained

in various summation items in equation (4). Then we have

dE di dV(

An energy function always has limit; therefore, equation (5)
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indicates that the system in state space can enable the total

movement energy find tht: position of the minimum value for energy

function E, and stays at these positions.

Figure 2 shows the system's energy terrain diagram composed

of two neurons corresponding to two steady points with very small

energy within a square prescribed by two steady points with very

small energy inside a square. However, when the amplifier has

very high gain so that the integrating item in equation (2)

approaches zero, then the system's steady point will be composed

of the locally very small value of energy function

I 1.1IE !. "ITVr,, _ V,- (2)

The steady points are located at 2N vertex angles of an

N-dimensional hypercube. At that time, the steady points of the

continuous value model network will directly correspond to steady

points of the two-valued model network [8-9].

Fig. 2. Energy Contour
Terrain Diagram of Double
Steady State Model Neural
Network (arrowheads in the
diagram indicate motion
direction (cited from [6])).
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Hence, whether a continuous-value model or a divergent-

value model, all energy functions can indicate the internal

connection between the system steady point and dynamic process.

Based on this relation, we can compose an associative memory

network [6, 7]. Actually, only by considering that the

associative momory problem as an optimal problem, can it be

related to the solution of the neural network through the energy

function; thus, the problem of how the neural network solves the

associative memory problem can be directly understood. In other

words, when placing the steady state of the system on a set of

special memory states, this purpose can be achieved only by

selecting the appropriate parameters Tij and Ii so that the

network is in a situation in which the energy function of the

memory state is locally minimum. For example, for a set of a

total of m memory states V6 ,S=I,2,...,m select the energy

function

E- -! .(O - then we can derive T,, - Vv and Ii=0

As mentioned above, the method for understanding the

associative memory network is of general significance. This

method can be used to solve many problems, such as analog to

digital conversion, decomposition/decision of signals, linear

planning [10], and the salesman's travel route [7]. In certain

conditions, the optimization problem can be naturally connected

with computations executed by the neural network through the

energy function. For a system of symmetry in synaptic intensity,

we have the following theorem: in a symmetric network, if the

input-output relation of a model neuron is simple harmonically

limited, and the variation is very slow for the input current (if

it exists) extrinsic to the network during the network

computation process, then the energy function is always

attenuated with time in the dynamic process of neural network as

described in equation (1). In other words, beginning from any

initial state, the system will move along the descending

12



direction of energy function. After arriving at the local

minimum, the system stops moving. However, if the synaptic

intensity is not symmetric, there is no unified movement

criterion in the system. The system's attractor can possibly be

the steady point and also possibly be the limit ring, and even

fuzziness phenomena may appear.

AB

Jt~

Fig. 3. Dynamic Process (A) and Energy Fig. 4. Limit Ring
Terrain Diagram (B) of Symmetric Network. Abstractor Possibly

Appearing in Unsymme-
tric Neural Network.

The above-mentioned concept can be explained with the phase

space diagram. Figure 3 shows the two-dimensional phase plane

diagram. Every curve in A corresponds to a movement possibly

occurring in the system; arrowheads indicate the directions of

movement. Every movement locus approaches a steady point and

stops there. B is the energy terrain diagram of A. Figure 4 is

an example of the possible appearance of limit rings in an

unsymmetric network.

The energy function is the overall quantity of the system;

every neuron cannot be in a condition of awareness. The state of

various neurons is determined by the neuron's equation of

movement (1). Through the energy function, we can naturally

project a specific computation problem onto the neural network

13



with symmetric connections. Thus we can directly understand the

fashion of solving problems in a model neural network. As

general methodology, the energy function also provides an

important means for neurophysiologists to understand the

computational features of the bioneural network. Obviously, the

energy function is like the concept of entropy in statistical

mechanics.

IV. The Problem of Solving Difficulties by Using Model Neural

Network

We know how to solve problems of associative memory in a

model neural network by using the energy function. However, the

associative memory problem is only a simple optimization problem.

With respect to complex problems such as a salesman's travel

route (called as the TSP problem in the following), how can the

situation be handled?

The TSP problem is a notably difficult problem that has been

studied intensively. The problem is quite clearcut: it is

required that a salesman covers n cities according to a certain

sequence. In his itinerary, he only visits every city once, and

finally he returns to his starting point. In the question, he is

to select the shortest closed route among many possible routes.

Here, the total length of a route is determined by distances

between paired cities. This is a so-called combinatorial

explosion problem; the computational volume will rapidly increase

with increasing n. When n is a very large number, solving this

problem with present-day computers is difficult. However, the

above-mentioned difficulty is easy to overcome by using the

neural network. Like the associative memory problem, the TSP

problem can be solved through the three following steps [7].

4.1 Mode of formulating the TSP problem
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The solution of a TSP problem with n cities is a sequential

table composed of n cities. Assume that the final positions of n

cities are determined by the output status of n neurons. Then it

is required that in the problem of n cities, there should be N=n
2

neurons to express a complete route. For convenience, the output

of n2 neurons is arranged in a matrix. For the problem of five

cities, one state of network neurons is as follows:

12345

00O010

C 0000 (6)

DO 00 01 0

Equation (6) is called a transfer matrix, which indicates a

route such as the follows: a salesman begins his journey at city

C; his first destination is city A, .... Finally, the salesman

returns to city C. Obviously, in an effective route-indicating

solution, the position occupied by any city cannot be more than

one; a position can be only occupied by a single city. In other

words, in describing the output state of an effective route,

there can only be one "1" output in a row, or a column; all the

others are "0."1 For decoding any transfer matrix composed of

output values, a route (the one solution of the problem) can be

obtained. It is not difficult to understand that there are a

total of n!/2n closed routes for a TSP problem of n cities.

4.2 Energy function of TSP problem

The energy function of describing a TSP problem should

satisfy the two following requirements:

(1) The energy function should facilitate reaching the

most stable state for the transfer matrix expressed by

15



equation (6); and

(2) The energy function should facilitate expression of the

shortest distance route in n!/2n solutions.

Considering requirement (1), the following energy function

can be selected-

E -FV,, + X'XV 5 ,V,~~Xv 7
, i . /of 1 2 . P0. P4 2 7

Considering requirement (2), the following energy function

can be selected:

V (V +V _,) (8)

Numerically, in equation (8) E2 is equal to the length of several

lines. In equations (7) and (8), the outputs of the neurons are

expressed with dual footnotes. The row footnotes are the names

of cities while column footnotes are the positions of these

cities. To express the final effect of several closed lines, the

modulus of footnotes is n.

The overall energy function is the summation of equations

(7) and (8). If ABC is a large enough number, all low energy

states are forms of expressing effective routes for the network

described with the energy function. However, the state with the

shortest route is the state in which the energy is at the lowest.
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Fig. 5. Convergent Process of Model
Neural Network for Solving a TSP
Problem With 10 cities (quote [71).

Key: (1) City;
(2) Positions at route.

4.3 Composing a model neural network

Based on equations (7) and (8), the joint matrix Tij can be

determined by secondary terms involving the energy function;

however, the extrinsic input current Ii is determined by the

linear terms. By the dual footnotes method as mentioned above,

we can obtain the joint matrix defined by the implicit function

as follows:

T.- A0---,,1., limiting connection with each row
-BO-6.,)S,, limiting connection within each column

-C integrated limiting function
-d ,+ 5 ,) data term

(9)
o0 :other situations]

The externally inputting current is

,I.- +c. stimulation offset (10)
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In Tij, the data term for the system as D is a kind of

input; this explains which TSP problem should be solved.

However, as required by any TSP problem, a general constraint is

provided for those terms with coefficients as A, B and C. Since

the energy function controls the dynamic process of the network,

the final state like that in equation (6) can be derived after

beginning with the initial offset of the network. In other

words, the network can select the optimal circuit among n!/2n

final states satisfying the constraint conditions under the

function of data terms.

Figure 5 shows the computer simulation result of a TSP

problem with I0 cities. The network never inclines toward any

special circuit of its state with a noise function for beginning

its operation. After a very short time period (approximately

several time constants for states a, b and c), the network is

convergent at state a. For the problem of 10 cities, there are a

total of 10!/20 (approximately 2 x 105) circuits. From this many

circuits, the network selects the two shortest circuits.

Therefore, the selectivity coefficient of this sort of network is

2/(2 x 105) = 10- 5 .

For a TSP problem with 30 cities, the total number of

circuits is approximately 1030. Therefore this is a difficult

(to control) problem. However, in a one-time convergence

(approximately several time constants), the network composed of

30x30 neurons can select 107 good solutions in expelling bad

solutions numbering 1023 times (good solutions). The selectivity

coefficient is 10-23.

Thus, it can be seen what a good approach in solving the TSP

problem we have been examining. We have reason to believe that

this unusually rapid and effective computation capability is a

natural result of utilizing the continuous variant and feedback

loop. System 0-1 does not have this sort of capability. Hence,
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the computation executed by model neural network is concretely

different from the Bohr logic operation.

V. Application of Model Neural Network in Initial Stage Vision

As described above, the Hopfield model has been developed

under guidance of the theory of computer vision; therefore, the

model naturally can solve problems in vision research. For

example, we can apply the model to solve the surface

interpolation problem [11] capable of maintaining noncontinuity.

There are two methods of reestablishing the surface from

data measurement: one is the reestablishment of a smooth surface,

capable of being solving with the standard regularization theory

[12]. Another method is the reestablishment of a smooth surface

section by section; this is a problem of nonsecondary type,

capable of being solved with random regularization method [13].

The model of reestablishment of a smooth surface section by

section is composed of two mutually coupling Markov random field:

one is the field of taking continuous values; the depth value is

fi as measured corresponding to position i. Another is the field

of taking secondary values; its variant is between lattice points-

of depth measurement. In this implicit function of linear

treatment, whether noncontinuity exists between two adjacent

depth elements is to be pointed out. Under the Bayesian estimate

corresponding to an energy function, the overall property of the

maximum estimate of the surface is very small.

As pointed out in the Hopfield model, the relationship in

state variants between the continuous-valued model and binary-

valued model is determined by the gain of the amplifier. When

A-0 , the amplifier output is 0 or 1. Hence, the linear

treatment of the two values can be projected in continuous

variant limited by 0 or 1. By only selecting the appropriate

energy function and renewal rule, it can be proven that the total
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energy of the network is always attenuated with time. The system

will evolve in attenuation fashion, and finally a minimum value

of E is attained. To a diagram composed of 32x32 image elements,

the result of computer simulation is shown as in Figure 6. The

left upper corner in the figure shows the initial state of the

network; the right lower corner shows the final state. Thus, it

is effective by using the Hopfield model in reestablishment of

the smooth surface section by section.

Figure 7A is a simulation network of carrying out surface

smooth interpolation section by section. The basic concept is to

combine a programmable parallel-processing device with local

connection, and a linear network composed of electric resistance

in a hybrid device. Corresponding to the linear element, a

digital processor can cut off the resistance connection between

two adjacent simulation processors by using simple switches.

This kind of hybrid device has two periods of fundamental

operations. Within the period of simulation operation, the

processor leads the current (corresponding to depth measurement)

into a simulation network. Then under the given linear

distributed situation, the resistance network finds out the

(only) surface as the smoothest. Within the period of digital

operation, the digital processing network reads out the current

values of resistance at various nodal points in the resistance

network. In addition, by using the software of a compiled

program, recomputation is conducted with linear processing of the

two values. Here, the random optimization method is easily

carried out. Then the processing will appropriately break off

connection lines in the simulation network. In designing an

artificial vision system, this configuration of the computation

network is a new concept. Figure 7B shows an imaginary mechanism

of the neural network of the hybrid device.
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0.0 0.4

Fig. 6. Processing Procedure of
Neural Network (quoted from [11])
for Interpolation of Field Scene
Composed of Three Inclined Cuboids.

A B

Fig. 7. Mixed Type Circuit (A) and Its Nerve
Realization (quoted from [113) in Carrying out
Smooth Surface Interpolation Section by Section.

VI. Discussion

After we have described the general situation of neural

network research and the rational framework of collective

computation of neural network, the following conclusions can be

reached:
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(1) Computer vision reveals the prologue of computational

neuroscience. Computer vision can be regarded as a genuinely

borderland discipline; with its lead, computer science,

mathematics, physics, systems science and systems engineering (in

addition to the traditional neuroscience method) are included in

the realm of neuroscience, which begins to show its brightness.

This method of utilizing interdisciplinary research is an

important source of creative concepts. Undoubtedly, this

approach will considerably speed up neuroscience research in

markedly changing the achievements of neuroscience. Recently, a

Department of Brain and Recognition Science was established at

the Massachusettts Institute of Technology, and again recently a

Research Project of Computation and Neural Systems was proposed

by the California Institute of Technology. These are important

decision steps taken with this kind of recognition. Hence, we

have reason to believe that computational neuroscience has become

a major research direction in neuroscience.

(2) In the rational framework of Hopfield's collective

computation of a neural network, a category of the optimal

problems can be naturally projected into a neural network with

symmetric connections. In particular, with the introduction of

the energy function and the application of design circuitry, we

can understand how the optimal solution can be derived by a model

neural network, which realizes the features of analog and digital

computers. However, essentially the model neural network is

different from either of these computers. On the one hand, the

network integrates data expression and programming of digital

computation. On the other, the network uses analog computation

to replace Boolean logic operation. Here, the differential

equation of the model is not of concrete significance;

essentially, the differential equation is a program; through it,

a solution of the problem can be obtained. This sort of

collective computation property of the model neural network is

obviously very significant to research on new-generation
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computers under development or present-day intelligent computer.

Actually, Hopfield's work attracted the general attention of

researchers. Not only are there high challenges at the level of

theoretical research, but the corresponding chips were also

manufactured. For example, chips for solving movement computing

problems have been manufactLred in the United States. Therefore,

we should stress this new trend of neuroscience research.

(3) At the same time, we must realize that the present

results have considerable limitations because research in

computational neuroscience is in its infancy. Many problems are

waiting for solution by researchers.

For example, network parameters are given in Hopfield's

theoretical framework. In other words, his proposed parameters

of a model neural network are written into the network after man

have advanced in computer science. The network by itself does

not have properties of learning and adaptation. Hence, it should

be clarified how a neural network with certain functions can be

self-organized [14] through learning and adaptation in order to

achieve the unity of human intelligent behavior and neural

structure; there is a relatively long distance to be covered.

For another example, Hopfield's model demands that the

connections of a neural network should be symmetric. This point,

however, is not established in all situations. Actually, some

networks are not symmetrical. One of the dynamic features of

unsymmetrical network is the existence of limit ring attractor,

whose concrete computational approach and meaning are not

understood by researchers, not to mention fuzziness phenomena.

For this kind of theoretical problems, it is possibly required to

have even higher theoretical viewpoints for research treatment.

On this aspect, some help to research can be provided by

Prigogine's theory on dissipation structure, Haken's coordination

theory theory, and Thom's mutation theory. It can be believed
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that once theories like dissipation structure are established in

neuroscience, this will a new face in a revolutionary change.

The focus of actually applying Hopfield's model is

concentrated at present on processing problems of associative

memory and initial stage vision. According to Hopfield's

estimate [8], the model's memory capacity is only N=0.15n.

However, if signals are appropriately encoded in advance, memory

capacity can be greatly increased. Hence, during research on

problems of associative memory, research on programming

technology should be opportunely developed. Hopfield's model has

some use in initial-stage vision as the model can solve problems

[11] that cannot be solved by the standard regularization theory.

However, when the energy function is of non-secondary type, at

present it cannot ensure that the network can process to the

state in which energy is at the minimum. Development and

perfection of this aspect of work is also a problem concerning by

researchers.

The paper was received for publication on 25 July 1987.
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